
Multi-Camera configurations with the Intel® RealSense™ LiDAR Camera L515

Ofir Mulla, Anders Grunnet-Jepsen

Rev 1.1

There are a number of important reasons for wanting to combine multiple depth sensors for simultaneous

live capture of scenes. For one, arranging depth sensors in an inward-facing configuration will allow for

the simultaneous capture of both the front and back of objects, so that the real-time, whole surface

volumes of objects can be captured. This volumetric recording can be used, for example, for Virtual- or

Augmented-Reality “teleportation” and teleconferencing, or for scanning and measurement of all sides of

an object.

From a technology perspective, optical interference may occur if the L515 is arranged so that it captures

scenes that consist of multiple simultaneously overlapping laser projections originating from independent

L515 cameras. This means that L515 cameras that are spaced sufficiently far apart or oriented such that

each camera cannot see the projected pattern from the other cameras, will NOT experience any

interference, as shown in left two images of Figure 1 below. However, the right most image will lead to

interference, and is the subject of this white paper.

Figure 1: Examples of configurations showing objects being scanned by multiple Intel RealSense L515 depth
cameras. By minimizing optical overlap, the system will be much less prone to interference, as shown by
two images on left. However, the right most image shows two overlapping fields-of-view, which can lead to
strong interference, unless properly mitigated.

To tackle high interference scenarios, it is recommended to enable hardware synchronization between

L515 devices. This is done by implementing a master-slave configuration in order to temporally isolate the

laser projections from each camera. When implementing hardware synchronization using the Intel

RealSense SDK 2.0, it is can be done by enabling “Inter_Cam_Sync_Mode” which will place each L515

camera into a “slave” mode. This ensures that cameras will only trigger their laser scanning and capture

when it receives a voltage-high signal on the designated hardware trigger port.

Figure 2: Examples of simultaneously streaming 2 Lidar in a high interference scenario where streams are
not HW synchronized (middle image) showing stripe artifacts. The right-most image shows the case where
interference has been eliminated (right) by using HW synchronization.

In this paper, we look at all the factors that need to be considered when connecting many Intel RealSense

LiDAR Camera L515s, as well as answering the question: “How many cameras can I connect?”

In the following analysis we examine an example of connecting four Intel® RealSense™ LiDAR Camera

L515s together in the inward facing configuration. We focus our attention on capturing and displaying

depth as well as the intensity and confidence maps where all cameras are connected to a single Intel

Skull-Canyon NUC PC (with Intel i7-6700HQ Quad Core Processor 2.6GHz up to 3.5GHz).

Figure 3: We will be examining how to eliminate the optical interference that may occur in examples of

directly overlapping optical light fields, such as the example shown here of scanning a body using multiple

parallel & collinear cameras (left), or cameras array around a person facing inwards (right).

By way of example, we will focus here on a body scanning application. In this case, we can achieve 360°

scanning using only 4 cameras. However, the user can decide to add as many cameras as desired as

long as a few degrees of overlap between cameras is maintained so as to get complete scans with no

gaps. For example, we show on Figure 4 below a body-scanning setup that was presented at the

Consumer Electronics Show in Las Vegas in 2020 which consisted of 8 cameras.

 Top View Side View

Figure 4. Body scanning camera configurations, corresponding to Figure 3, showing camera alignment in

order to scan a human body. In this configuration, 8 cameras were used, as each pole had two cameras.

In addition to the L515 cameras, large optical targets were placed between the poles to allow for initial

calibration between the cameras, as shown in Figure 5.

Figure 5. Flat targets containing optical fiducial markers were placed between the poles to facilitate

alignment and extrinsic calibration of all the cameras.

In the following, we are going to go step-by-step through all the actions that needs to be taken to ensure

that there is no interference when multiple cameras are used.

1. Connecting the cameras

Multiple cameras can be connected to a PC and will be able to stream independent data. Normally,

the cameras operate in the “Default” mode and will stream asynchronously. However, as mentioned

earlier, they can be HW synchronized so that separate cameras project light staggered in time (i.e. to

reduce optical interference) and data streams do not occur simultaneously (reducing USB peak

bandwidth issues). The cameras will need to be connected via sync cables, and will need to be

configured in software to operate in Sync mode. The connector port can be found on the cameras as

shown below, and a cable will need to be assembled. The cable should be connected to a central unit

that controls the sync signals (we used Raspberry Pi4 GPIO).

Figure 6. The Intel RealSense LiDAR Camera L515, showing the location and cable connection of the HW

sync port.

The Red line, shown here, is 3.3V while the black line should be connected to ground, as shown in

Figure 8. The cable part numbers are detailed in the table below.

Figure 7. Schematic of the cable connection of the sync port on the L515 camera

Type Part # Link
Board side SM03B-SRSS-TB

https://www.digikey.com/product-detail/en/jst-sales-america-
inc/SM03B-SRSS-TB-LF-SN/455-1803-1-ND/926874

Cable side
connector

SHR-03V-S

https://www.digikey.com/product-detail/en/jst-sales-america-
inc/SHR-03V-S/455-1393-ND/759882

Crimped wire ASSHSSH28K305 https://www.digikey.com/product-detail/en/jst-sales-america-
inc/ASSHSSH28K305/455-3077-ND/6009453

Table 1: Part numbers for HW sync cable assembly

For HW sync, pins 1 (SYNC) and pins 2 (Ground) need to be connected as shown below. Since the

L515 input is robust to ESD noise, it is possible to use up to 10m cable lengths without taking special

noise filtering or shielding precautions.

Figure 8. A close-up view of the connector and the connections.

2. Multi-camera considerations:

Multiple cameras can be connected together, but exactly how many depends on several factors that

will be discussed here. We start by sharing our experiences and then diving into more detail for those

who want to explore pushing the limits even further. We show a table below that uses a 4-port

powered USB3 hub (AmazonBasics) connected to the NUC PC. As explained before, since L515

halts the stream when it is not projecting, the only thing that needs to be taken into account is how

many cameras project simultaneously. For example, it is possible to control 16 cameras as long as

the number of simultaneous projections are maintained as specified in the table below. In that case

https://www.digikey.com/product-detail/en/jst-sales-america-inc/SM03B-SRSS-TB-LF-SN/455-1803-1-ND/926874
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SM03B-SRSS-TB-LF-SN/455-1803-1-ND/926874
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-03V-S/455-1393-ND/759882
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-03V-S/455-1393-ND/759882
https://www.digikey.com/product-detail/en/jst-sales-america-inc/ASSHSSH28K305/455-3077-ND/6009453
https://www.digikey.com/product-detail/en/jst-sales-america-inc/ASSHSSH28K305/455-3077-ND/6009453
https://www.amazon.com/dp/B00DQFGH80/ref=asc_df_B00DQFGH805315309/?tag=hyprod-20&creative=394997&creativeASIN=B00DQFGH80&linkCode=df0&hvadid=167151358503&hvpos=1o1&hvnetw=g&hvrand=9308811005364068537&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9032905&hvtargid=pla-281221827342
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SM03B-SRSS-TB-LF-SN/455-1803-1-ND/926874
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SM03B-SRSS-TB-LF-SN/455-1803-1-ND/926874
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-03V-S/455-1393-ND/759882
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-03V-S/455-1393-ND/759882
https://www.digikey.com/product-detail/en/jst-sales-america-inc/ASSHSSH28K305/455-3077-ND/6009453
https://www.digikey.com/product-detail/en/jst-sales-america-inc/ASSHSSH28K305/455-3077-ND/6009453
https://www.amazon.com/dp/B00DQFGH80/ref=asc_df_B00DQFGH805315309/?tag=hyprod-20&creative=394997&creativeASIN=B00DQFGH80&linkCode=df0&hvadid=167151358503&hvpos=1o1&hvnetw=g&hvrand=9308811005364068537&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9032905&hvtargid=pla-281221827342

the total number of cameras should not be the limiting factor. The green cells indicate that streaming

has been verified successfully, while the red designates problems started occurring leading to less

than the half-frame rate..

Peak Bandwidth (Mbps)
No parallel
projection

2 parallel
projections

3 parallel
projections

4 parallel
projections

Depth: 1024x720@30Hz
+16bit Depth
+8bit IR
+4bit (Packed in 8) Confidence

832.7 1665.4 3330.8 6661.5

Depth: 640*480@30Hz
+16bit Depth
+8bit IR
+4bit (Packed in 8) Confidence

347.0 693.9 1387.8 2775.6

Table 2: Streaming results when using 4xL515, connected via a 4-port USB3 hub with HW sync enabled.

Green designates confirmed robust streaming. This table primarily highlights how USB3 bandwidth

limitations affect the choice of number of parallel USB streams.

Returning to the example shown in Figure 4, where we want to enable scanning with 8 cameras, we note

that cameras on opposite sides of a person see little interference, so we opted for a HW sync

configuration where we allowed opposing cameras to stream simultaneously. We used the following

pseudo code:

Disable All cameras
Enable Camera 0 & Camera 1
Capture “X” frames
Disable Camera 0 & Camera 1
Enable Camera 2 & Camera 3
Capture “X” frames
Disable Camera 2 & Camera 3
Enable Camera 4 & Camera 5
Capture “X” frames
Disable Camera 4 & Camera 5
Enable Camera 6 & Camera 7
Capture “X” frames
Disable Camera 6 & Camera 7

As a result, we managed to keep interference negligible and also maintain peak bandwidth lower than

HUB limitations, i.e. to 2 or less simultaneously streaming cameras at 1024x720 resolution, with depth,

IR, and confidence streams at 30fps.

The following section will explain in more detail some of the factors limiting the number of cameras and

data streams.

A. Bandwidth

When connecting multiple cameras to a single USB 3.0 hub, the first limitation to consider is the

bandwidth limitation of the host system. The USB3.0 “SuperSpeed” interface of the L515 camera in

principle supports 5Gbps. However, “accounting for the encoding overhead, the raw data throughput

is 4 Gbit/s, the specification considers it reasonable to achieve 3.2 Gbit/s”1. Even this may be an

optimistic upper limit. Based on our understanding and research the actual sustainable throughput

number is 50% below the theoretical limit.

Turning now to the Intel RealSense L515 camera, the camera can operate in two resolutions: XGA

(1024x720) & VGA (640x480). For best depth lateral performance (details inspection) it is generally

recommended to operate the L515 at XGA but if SNR and range are the limiting factors VGA is

recommended. When operating in XGA it is recommended not to project more than 2 cameras

simultaneously while for VGA up to 3 simultaneous cameras can be used, as shown in the table

above.

B. Power

The USB3 specification is 900mA, or 4.5W. The power consumption of the Intel RealSense L515

Lidar camera can approach or even exceed 3W per camera. As such, a rule of thumb should be to

make sure to use USB Hubs that support external power supplies, or to use individual ports on a PC

that provide independent power to the USB ports. A powered HUB will normally provide 12.5W or

more. Since no more than 3 cameras project simultaneously on a 4-port hub, this power is enough to

drive 4 L515 cameras.

C. CPU

Attaching multiple cameras will also require processing power from the host system for reading the

USB devices, streaming the high-bandwidth data, and doing some amount of real-time post

processing, rendering, and application specific processing. When streaming high resolution color and

depth, the processing requirements quickly add up, and will impose another important limitation that

needs to be considered. We will not go into an extensive analysis of this here, except to say that care

should be taken to select a computer platform that supports the intended workload.

D. Cabling and enumeration

Another perhaps mundane consideration is the cabling. Unfortunately, the quality of USB3.0 cables

can vary quite a bit. For best performance, we recommend using high quality cables and using as

short cables as possible - preferably less than 1m. If any bandwidth issues are observed, it can be

good to replace cables or shorten them to see whether this is the cause of the errors. It is also good

to confirm that the cameras are indeed connected by checking that the enumeration completed

successfully on the device manager.

If it is necessary to use cables longer than 2m, we recommend using USB3 repeaters, and not just

extension cables. Unfortunately, the quality of these vary tremendously. We have found that the

following appears to work quite well. We have successfully strung 4 of these together.

https://www.siig.com/usb-3-0-active-repeater-cable-10m.html

E. External Trigger

1 Universal Serial Bus Revision 3.0 Specification

https://www.siig.com/usb-3-0-active-repeater-cable-10m.html
https://www.siig.com/usb-3-0-active-repeater-cable-10m.html

For multi-camera case, an external signal generator should be used as the master trigger with all

cameras set to slave mode. The trigger voltage amplitude should be @3.3V, and the first frame is

triggered on the positive (rising) pulse edge.

When applying an external sync pulse, the HW SYNC input pulse width will determine how many

images will be taken.

Figure 9. Timing example for external trigger

• Ton:

o Pulse width = 60ms(setup) + #of frames*33ms

o For example: for capturing 3 consecutive frames Ton needs to be high for 160ms

• Toff:

o Pulse width should be wide enough to reduce risk for interference

Note: Driver strength recommendation is 8mA-16mA.

For the 8-camera body-scanning demo, the following capture waveform was generated (leading to

the results shown in Section 3). A single scan completes in 640ms.

Figure 10. Example timing diagram of trigger signals sent to the 8 different L515 cameras used in the

body scanning demonstration. Each camera (placed in slave mode), will only capture during signal-high.

This diagram shows how pairs of cameras were turned on at a time, for 160ms captures, for a total

capture time of 640ms.

3. Multi-Camera Programming:

There are two ways to program the L515 to operate in Sync mode:

• Option A: During initialization and configuration phase

o Code is a bit more complex

o No frame drops as camera always operate in interlaced mode

• Option B: During streaming

o Simpler code

o A few initial frames will suffer from interference and frame drops before HW sync

becomes fully enabled

We recommend Option A, enabling hardware sync mode prior to streaming. This is described

below in code block A. but we also show the code for Option B below.

 A. Programing trigger configuration prior to streaming

pipeline p;
config cfg;
cfg.enable_stream(RS2_STREAM_DEPTH);
auto r = cfg.resolve(p);
r.get_device().query_sensors().front().set_option(RS2_OPTION_INTER_CAM_SYNC_MODE, 1.f);
p.start(cfg);
auto frames = p.wait_for_frames();
auto d = frames.get_depth_frame();

B. Programing triggered capture during streaming

pipeline p;
config cfg;
cfg.enable_stream(RS2_STREAM_DEPTH);
auto r = p.start(cfg);
r.get_device().query_sensors().front().set_option(RS2_OPTION_INTER_CAM_SYNC_MODE, 1.f);
auto frames = p.wait_for_frames();
auto d = frames.get_depth_frame();

C. Point cloud stitching

Once depth maps and color images have been captured from each frame, the next step is to

calculate their 3D point-clouds and to align them. There are methods known in the art for doing this.

In our example, we found it sufficient to simply rotate the point-cloud data from each camera using a

3D affine transform that would rotate and shift the point-clouds and form one large composite point

cloud. This code shows basic point-cloud stitching with ROS and is not limited to specific cameras,

like the L515 or D400.

https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-

machines

https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-machines
https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-machines
https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-machines
https://github.com/IntelRealSense/realsense-ros/wiki/showcase-of-using-3-cameras-in-2-machines

Finally we turn to the payoff – the 3D scan. Figure 11 shows the results obtained with the 8-camera

capture rig.

Figure 11. Example of resultant 3D reconstruction derived from combining the point-clouds from the 8x

L515 cameras

4. Summary

 We have explored here a number of the most important considerations for capturing 3D depth using

multiple Intel® RealSense™ LiDAR Camera L515s simultaneously, and have highlighted the limitations

associated with USB3 bandwidth, power consumption, CPU power, latency, and physical cabling.

Appendix
The following section will show a simple code how to generate a sequence of GPIO sync between the

cameras over Raspberry Pi 4

#!/usr/bin/python3
import RPi.GPIO as GPIO
import time
Camera0 = 7
Camera1 = 23
Camera2 = 37
Camera3 = 12
Camera4 = 18
Camera5 = 22
Camera6 = 32
Camera7 = 36
GPIO.setmode(GPIO.BOARD)
GPIO.setup(Camera0, GPIO.OUT)
GPIO.setup(Camera1, GPIO.OUT)
GPIO.setup(Camera2, GPIO.OUT)
GPIO.setup(Camera3, GPIO.OUT)
GPIO.setup(Camera4, GPIO.OUT)
GPIO.setup(Camera5, GPIO.OUT)
GPIO.setup(Camera6, GPIO.OUT)
GPIO.setup(Camera7, GPIO.OUT)

GPIO.output(Camera0, GPIO.HIGH)
GPIO.output(Camera1, GPIO.HIGH)
time.sleep(0.16)
GPIO.output(Camera0, GPIO.LOW)
GPIO.output(Camera1, GPIO. LOW)
GPIO.output(Camera2, GPIO.HIGH)
GPIO.output(Camera3, GPIO.HIGH)
time.sleep(0.16)
GPIO.output(Camera2, GPIO.LOW)
GPIO.output(Camera3, GPIO. LOW)
GPIO.output(Camera4, GPIO.HIGH)
GPIO.output(Camera5, GPIO.HIGH)
time.sleep(0.16)
GPIO.output(Camera4, GPIO.LOW)
GPIO.output(Camera5, GPIO.LOW)
GPIO.output(Camera6, GPIO.HIGH)
GPIO.output(Camera7, GPIO.HIGH)
time.sleep(0.16)
GPIO.output(Camera6, GPIO.LOW)

GPIO.output(Camera7, GPIO LOW)

GPIO.cleanup()

	Appendix

