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Abstract: We explore the value proposition of using miniature depth cameras for integration into mobile 

phones, examining in particular all the considerations that need to be taken into account to address front-

facing usages such as enhanced 3D face authentication, background segmentation, hi-res 3D selfies, 3D 

avatar animation, and 2D photo enhancements derived from use of 3D information, such relighting of 

scenes. 

1. Introduction: 

“Depth cameras” are cameras that are able to capture the world as a human perceives it – in both 

color and “range”, although some depth cameras only provide range maps.  The ability to measure the 

distance (aka “range” or “depth”) to any given point in a scene is the essential feature that distinguishes 

a depth camera from a conventional 2D camera.  Humans and most animals have evolved to have two (or 

more) eyes that see the world in color, and a brain that fuses the information from both these images to 

form the perception of color and depth in something called stereoscopic depth sensing. This allows 

humans to better understand volume, shapes, objects, and space and to move around in a 3D world.  

 

Figure 1. The output of a depth camera. Left: Color Image of a cardboard box on a black carpet.  Right: Depth map with 

faux color depicting the range to the object. 

 



Figure 2. The 3D Point Cloud of the box captured in Fig 1. Left shows 3D mesh without color texture, and right shows the 

same scene with the image color texture applied. The top and bottom are different views seen by rotating the point-of-view. 

Note that this is a single capture, and not simply photos taken from different viewpoints. The black shadow is the 

information missing due to occlusions when the photo was taken, i.e. the back of the box is of course not visible. 

In this article we will examine first how miniature depth camera could enable exciting new usages in 

mobile phones. We then present an overview of various depth sensing technologies and the 

considerations that need to be taken into account for mobile phone usages. We will examine in some 

detail the performance of Intel RealSense™ stereoscopic depth cameras, and will conclude by highlighting 

some of the key metrics that serve as the basis for characterizing and comparing performance.      

2. Depth Cameras for Mobile Phones: 

The 2D camera phone made its debut in year 2000 and was introduced in Japan by Sharp in the Model 

J-SH04. By 2013 the term “Selfie” was so commonplace that it was introduced into the Oxford English 

Dictionary. Today it is hard to imagine a mobile phone without at least one, if not 4, cameras. There has 

of course been the steady advancements over time of improving on the image quality in terms of 

resolution (the megapixels wars) and color quality, speed (frame rates), and low light sensitivity, to name 

a few.      

So what value can a user-facing Depth Camera bring to the mobile phone? Being able to capture ones 

true likeness in 3D is of course better than 2D. This can be shared online as a 3D Selfie, or it can be 

enhanced in apps similar to Snapchat by allowing you to apply 3D filters that take into account the true 

3D shape. For example, if you put on virtual elven ears or new virtual sunglasses or add a face tattoo in 

the app, they will look even more realistic as they rotate in space and get properly occluded as you move 

your head. 3D shapes can then also be inserted into apps or even be printed out via a 3D printer. Another 

usage is the ability to invoke a Privacy Mode, whereby only objects within a certain range of the phone 

would be visible. By applying this Background Segmentation you could be video chatting in a coffee shop 

and the people who walk behind you would not be visible.  Another very important usage is 3D-enhanced 

Face Authentication.  By capturing the true 3D shape, dimensions, and color of your face, it is possible to 

create enterprise-grade spoof-proof User Login that is extremely convenient, moving us a step closer to a 

password-less world, not just for logging into your phone but for financial transactions as well. 

 

Fig. 3. A 3D-Selfie. The single photo was taken outside in full sunlight with a Depth Camera and is shown as a textured 3D 

point-cloud that is rotated to different views. Note that the true dimensions of the face are captured. In this picture anything 

beyond 0.6m was left out. For true Background Segmentation a more complex algorithm would be used that would yield 

cleaner edges and would use both RGB and Depth information.       



In the next section we will explore how far away from reality this vision is, and what technology 

options should be considered.             

3. Survey of Depth Camera technologies: 

There are a variety of incredible technologies that are possible candidates for miniature depth 

cameras. We can start with the likely most familiar technologies. The Laser Range Finder that can be found 

in a hardware store currently only provides a single depth point, but comes in two variants that illustrate 

very well two common techniques: Time-of-Flight and Triangulation. In Time-of-Flight, or ToF, a single 

ultra-short pulse of light is emitted and a co-located detector then measures the arrival time of the beam 

reflecting back from the object. The farther away the object, the longer the return time. Conversely, this 

incredible technology effectively measures the speed of light if you know distance to the object. This is no 

small feat and a testament to amazing advancements in high speed electronics.  However, it is difficult to 

achieve sub-millimeter measurements with this technique and so for objects that are near it is common 

to use the triangulation technique.  

Triangulation dates back to antiquity and the beginnings of trigonometry in ancient Egypt.  It was, 

for example, used to measure the height of the Pyramids by measuring their shadows and comparing 

them to the shadow from a vertical stick of known height. Laser range-finding triangulation works by 

placing the laser and detector a certain distance apart, which we call the baseline distance.  The laser 

pointer emits a beam that hits the object.  The detector images this object and in general the detector 

can only see the laser beam (everything else is black). By measuring where the laser beam spot appears 

on the sensor it is possible to measure the distance to the object based on the triangle laser - object - 

detector.  The more the beam has displaced from the center, the closer the object is, as shown in Figure 

below.  

                 

Fig. 4 Left: Time-of-flight single-point laser range finder.  Measuring the time for a pulse to be transmitted, reflected and 

detected will reveal the distance to the object. Right: Laser range finder based on triangulation. As the object distance varies, 

so does the spot location on the sensor. In this case, the closer the object, the more the spot is displaced to the right on the 

sensor. Structured Light and Stereoscopic depth sensors rely on the same triangulation principles.    

Both of these techniques have been perfected over time and variants have been developed to 

measure not only a single point, but well over a million points per second. Pixelated ToF sensors have been 

embedded in products like the Microsoft Kinect One, for example. In this product a “Flash” of light 
illuminates the whole scene and thousands of small sensors individually measure the return time from 



different parts of the scene. Another variant on this is the scanning Lidar used in some automobiles where 

a single beam (or perhaps a few beams) is scanned across the scene and a depth map is built up over time.  

Triangulation-based sensors have also evolved into many variant. For example in “Structured Light” 

sensors 10’s of thousands of spots (or patterns of spots or lines) are emitted and individually triangulated.  

The original Primesense Kinect sensor uses this technique. “Coded-Light” is another technique which 

builds on structured light concepts by using patterns that vary over time and compositing finer detail 

depth from multiple images. Finally we return to the way that humans see depth, via stereoscopic imaging. 

This is also a triangulation technique, but instead of needing to know exactly what pattern of light is being 

emitted, electronic stereoscopic vision systems simply match image patches in the left eye (i.e. camera) 

to image patches in the right eye. The objects that are closer are displaced more in the horizontal axis. 

Stereoscopic vision is the only technique which can be truly “passive” meaning that no light needs to be 
emitted. In the special case where a scene has no intrinsic texture, like a plain white wall, this type of 

sensing can be problematic as matching left and right image patches becomes ambiguous. In this case a 

laser can be used to project a texture. This is called “assisted” stereo vision or sometimes “active” stereo. 

However, a priori knowledge of this pattern is not required for stereo vision, unlike structured light 

approaches.  

For completeness, we should also mention another couple of techniques that use a single sensor and 

no laser emitter. One approach is called “Structure-from-Motion”, SfM.  This is quite similar to 

stereoscopic vision in that as a user moves the camera in space, the camera can effectively take an image 

at point A and another at point B a little time later and treat them like two stereoscopic images. The 

challenge is knowing how much the camera has moved and what direction they are pointing at both 

points, and of course it assumes that the scene does not change over time.  This is what monocular SLAM 

algorithms (Simultaneous Location And Mapping) are all aboutb, and they usually augment their 

performance by fusing their data with other sensors, such as inertial measurement units, or IMUs, that 

consists of electronics gyroscopes and accelerometers that can measure changes in angle or speed.  

Another approach gaining traction is Machine Learning. The core premise is that with enough prior 

knowledge of world scenes that have been tagged with ground truths, a computer can be taught to infer 

a depth from optical clues. This is similar to asking the question: “How can humans drive a car if they close 

one eye?”  Beyond stereo vision, there are a lot of monocular vision cues that can be used, including 

motion parallax, depth from optical expansion (objects get larger as they move closer), perspective 

(parallel lines converge in the distance), relative size, familiar size, accommodation (focus/blur), 

occultation (objects that block other objects are perceived as closer), texture gradients, and lighting and 

shading, to name just a few.c     These cues tend to be very good at understanding relative depth, but not 

as good at absolute very quantitative depth. 

In principle all these technologies can be miniaturized to fit physically inside a mobile phone, but some 

are better fits than others in terms of the maturity of optimizing solutions for phone integration and for 

application-specific mobile phone usages.  This is a key point: Phone companies have to keep size, cost, 

weight and heat to a minimum to maintain a cardinal rule of Mobile Phones – Mobility and Ease of use.   

In the following sections we drill down on the requirements of depth sensors for mobile phones, and 

then introduce the stereoscopic solutions comprising the D4xx family of Intel RealSense™ depth sensors 



which have been optimized for indoor and outdoor usages for mobile phones, drones, robots, 

augmented/virtual reality (AR/VR), and surveillance applications.  We then conclude with a more detailed 

explanation of how to characterize and quantify the depth performance.  

4. Requirements for Mobile Phone usages:             

 Mobile phones are amazing feats of technology integration. Steve Jobs famously dropped an early 

iPod prototype (the predecessor to the iPhone) into a tank of water and complained that all the bubbles 

of air coming out was empty space that could be better utilized. As we consider adding a depth sensor to 

mobile phones we need to focus on balancing 1. Size, 2. Power/thermals, 3. Cost, and 4. Performance 

framed around the intended usages.   All are intimately tied together and require a complex trade-off 

analysis.   Performance is by itself a very intricate and nuanced discussion. For example, an optimal 

solution would have high frame rate for real-time usages of background segmentation and 3D capture, 

and a high X-Y spatial resolution for good background segmentation, and a high depth resolution (Z-axis) 

for good 3D depth for face authentication and 3D selfies. It should ideally also provide a fully hardware 

synchronized and pixel-matched calibrated mapping between depth and color (or IR image) which is 

critical for good background segmentation.  Expanding on depth performance, we note that this can 

essentially be bucketed into two questions: 1. “What can the depth camera see?” And 2. “What is the 

error on what it can see?”. 

 Structured Light, ToF, or Stereoscopic depth camera technologies all have tradeoffs in 

performance so it is important to understand what they can and cannot see. For example, while starting 

an analysis by looking at plain walls is very informative (as we will see in section 6), for the 3D selfie usage 

it is arguably more important to be able to see all objects that could appear in a common scene. Since 

faces may be adorned or have hands and jewelry in them or silk ties, it is important for the sensors to be 

able to see dark hair, full black beards, leather gloves, glasses, cloths that absorbs IR light, shiny metal 

objects, jewelry, hats of different material, masks, and various skin colors and make up. Many early 

sensors did great on the important clean-shaven bald white man demographic, which is of course not 

enough.  “Active” solutions that rely on seeing the reflected beams of light can find many of these 

examples quite challenging. This is especially true in bright outdoor environments where sensors need to 

compete directly with sunlight to see the reflected beams.  The effects of sunlight can be somewhat 

mitigated by shifting to 940nm light, by using global shutter sensors and time gating the emitted/detected 

light, and by simply increasing the power of the laser projectors. Beyond power concerns, the latter 

approach has hard limits associated with eye safety which is clearly paramount.   Another question is 

usability around whether more than one phone can be used at the same time near one another.  Many 

active sensor technologies suffer from cross-talk issues because the beams they send out contain 

important information that will interference with other mobile phones. Good stereoscopic solutions, 

however, do not suffer from any of these drawbacks as they see most objects, work well completely 

passive, and work extremely well in bright sunlight, and even under water.  

 



   

Fig. 5A The outdoor 3D selfie, needs to see the user as well as the background. The point-cloud shown on the right was 

down-scaled on purpose to show grid lines. This capture was made with the miniature RealSense™ F400 module intended for 

mobile phones.  

 

Fig. 5B An example of a capture with a RealSense™ D435 Camera, showing a depth map on the left for a traditionally difficult 

scene that included dark carpets at various angles, shiny black metal bowl, specular plastic ball, and black leather purse with 

metal zipper.   

 

Other factors to consider are sensitivity to motion of both the user and the scene. To combat this, 

the sensors generally have to support short exposure times and be very sensitive to low light. Global 

shutter sensors are a nice solution but the trade-off tends to be larger pixels and more cost and result in 

solutions that are much larger, in particular in lens height which is critical to achieve thin mobile phones.  

Related to size is also the choice of baseline. For triangulation-based sensors the depth resolution 

improves linearly with the distance between the sensors, but this obviously increases the size of the 

solution and there are limits to placements of censors in mobile phones.  Turning to operating range, users 

would of course like to have a small minimum range (aka Min-Z) for those really near close-ups, as well as 

a large max range so they can capture the background as well. Active solutions do well in near range but 

generally do not see well beyond a few meters at which point the reflected IR light pattern becomes too 

weak to be visible.   

Another category of challenges is associated with artifacts that stem from the measurement 

techniques. For example some geometric shapes or edges can cause problems and not be properly 

resolved. For example, ToF solutions tend to suffer from sensitivity to multipath interference, which 

means that the reflected pulses can come from multiple objects after multiple reflections. This manifests 

itself in such artifacts as convex right-angle corners being captured as quite “rounded”.  There is also a 

large problem for any scene that has retro-reflector “cat’s-eye” tape in it, which is not an uncommon 

addition to hats or clothing in northern Europe.  Stereoscopic sensors do not have any issues with these 



cases, but do have a problem with very precise periodic patterns, where aliasing problems can lead to 

misreporting the depth values.  Another big challenge is the dynamic range of the sensors. It is important 

to be able to calculate depth to all parts of a complete scene, even if it has large intensity (reflectivity) and 

depth variations in the same image, like faces with black make-up or dark glasses, or a person standing in 

bright sunlight with dark shadows under hats or chins.  This becomes especially difficult for active systems 

because image brightness scales as the square of the distance away and it therefore sees a very strong 

variation with distance. Ideally a system should be able to capture depth at a wide range of distances and 

not just in the plane of the face.   This is similar to trying to take a close-up selfie in the dark using a flash 

– parts of the image will be visible and part slightly farther back will be very dark.  Passive systems do a 

much better job in these scenarios as they rely on ambient illumination and do not suffer from this 

saturation, unless they turn on their flash of course.     

This brings us to the importance of how well or with what error object distance can be measured.   

For all triangulation techniques it is important to understand that the error grows quadratically with 

distance away. The beneficial corollary is of course that objects that are near have higher depth resolution 

which is why triangulation is favored for sensing near objects.  So when the question is asked “What is the 
range of the depth sensor?”, for passive stereoscopic solutions one could answer “infinite”, as these 

systems will see extremely far, just like humans can see objects as far away as the moon, the sun, and the 

stars. The important thing is to report the right value for depth of course, but this is where the answer of 

maximum range becomes specific to the application. Capturing a face in 3D needs very high depth 

resolution, but background segmentation can cope with much more depth error.  In general, all 

triangulation-based techniques have smaller depth error with larger baseline, larger sensor resolution, 

and smaller field-of-view (i.e. optical zoom) and can therefore be tailored for specific usages.   

Furthermore, most depth sensors can benefit from averaging the measurements over time, where the 

application usage permits it.   

While we have focused so far on how important depth errors are for objects that are visible, it is 

equally important that a system not report seeing something that is not there, i.e. “hallucinating”.   Many 
ToF solutions will, for example, have lots of spurious depth points or salt-and-pepper noise that are simply 

false readings, and need to somehow be filtered away in post processing. Many ToF solutions may also 

show a “spray” of depth values near edges because the ToF pixels are recording depth from both the near 
object and the background at once.  

In the next section we look at how Intel’s RealSense™ Stereo Depth Cameras can offer a rich 

balanced solution and design freedom to cater to mobile phone integration and usages.  

5. Intel RealSense™ Stereo Depth Camera: 

Intel has been developing depth sensing solution based on almost every variant of depth sensing 

technology for several years, and all technologies have their technological tradeoffs. Of all the depth 

sensing technologies, stereovision is arguably the most versatile and robust to handle the large variety of 

different usages. While one could be tempted to think that stereoscopic vision is old school technology, it 

turns out that many of the challenges faced by stereo depth sensing in the past have only now been 



overcome – algorithms were not good enough and prone to error, computing the depth was too slow and 

costly, and the systems were not stable over time.      

How have we arrived at today’s stereovision solutions? Stereoscopic depth sensing was first 

explained in 1839 by Charles Wheatstone as he invented the stereoscope, which is a predecessor to the 

ViewMaster kids’ toy. In Fig 6 we give a brief overview of the concept showing how a stereo pair of left 

and right cameras will see different views. The key point to notice is that objects that are closer will 

experience a larger shift along the horizontal line or epipolar line. This shift is known as the disparity and 

we can calculate disparities for every point in the scene, as seen in Fig.6 where the pixels on the near-

range balloon have a large disparity than the ones on building in the background.  Finding matches 

between left and right image patches is known as solving the correspondence problem.  The depth map 

can then be calculated from the disparity map through simple triangulation.    

   

  

Fig. 6. Stereo depth perception. The left and right images will see the same scene from different viewpoints. Objects that are 

closer will shift a certain number of pixels (or disparities) along the horizontal axis (epipolar). The resulting disparity map can 

be converted to a depth map using triangulation.  

Computer stereo vision became a very prominent area of research in the 1970s, and was kicked 

off by such early efforts as by Clark Thompson in 1975e. Algorithms to better understand depth made 

great advancements, and the Middlebury Benchmark to compare stereo algorithms with respect to 

accuracy was established in 2002, followed by the KITTI dataset in 2012 for outdoor navigation and 

robotics benchmarking. f,g By providing an open-source set of stereoscopic images annotated with laser-

scanned ground truths, it became possible to compare the performance of different algorithms on a 

common playing field and to see a steady progression of improvements over time.  The performance of 

state-of-the-art stereo depth algorithms has become quite impressive but it has in general come at the 

expense of ever increasing complexity and processing power. Some of the best algorithms can take several 



minutes to calculate depth from single pair of 2MP images, even on 4 cores of an i7, consuming 10’s of 
Watts of power.   

 

   

Fig. 7. Left: Intel RealSense™ D4m vision processor. Middle: Example of one of the Intel RealSense™ D4xx series depth 
modules encased in a steel case. RIGHT: Intel RealSense™ USB3 Depth Camera D435. 

 

Fig. 8 The F400 Camera Module form-factor reference design showing two imagers sensitive to IR and RGB light, with a 

15mm baseline, and an IR flood illuminator in the middle for operation in the dark.  This design was optimized for user-facing 

mobile phone usages for small size, cost and power, and can be complimented with additional structured (texture) light 

projector if desired, but is generally not necessary for most mobile phone usages.   

 Intel has greatly accelerated this compute by creating custom silicon for depth sensingh that can 

achieve calculation speeds of over 36 Million depth points/second using a customized variant of a Semi 

Global Matching algorithm, achieving frame rates of >90fps, using less than 22nW/depth-point in a chip 

package size of 6.3x6.3mm which is a fraction of that of the Intel Core i7. The goal was to enable computer 

stereo vision to achieve performance levels (power, thermals, resolution, frame rate, size, cost etc.) 

needed for embedding in small consumer electronic devices such as mobile phones, drones, robots, and 

surveillance. With this goal in mind, Intel is now on its 2nd generation ASIC that shows great improvements 

especially in environments where the projected light of any active system (assisted stereo, structured, or 

ToF) would be washed out or absorbed, outside or on dark carpets that tend to absorb IR light, as seen in 

Fig 9.     



 

Fig. 9 Example scenes comparing the previous generation LR200 Module vision processor performance with the new D410 

Module and vision processor showing the vast improvement in one chip generation. 

One very important trait of a great stereo depth algorithm is the ability to achieve a subpixel 

accuracy of <0.1.  This means finding the correspondences in the left and right images and matching their 

location to much better than a fraction of a pixel resolution.  Intel’s algorithms routinely achieve 0.05 sub-

pixel accuracy for well textured passive targets, but in general the accuracy can vary and will be worse for 

objects that have little or no texture.  One of the important and most publicized limitations of passive 

stereo systems is that it has difficulty finding correspondences (and hence depth) on objects that have 

very little texture, like a completely clean white board. The better the optical systems (image quality) and 

the algorithms, the better they are at teasing texture out of difficult scenes using information from 

multiple color channels, but there are still corner cases that can be very challenging. In this case it can 

help to use an external projector to project a beam of light that creates a texture on the scene, for example 

by projecting 100’s of thousands of small spots at pseudo-random locations. In this configuration the 

system is known as “assisted” or “active” stereo and is very similar in performance to structured light 

systems. The main difference is that for active stereo the pattern is not critical and does not need to be 

calibrated to the laser, and the spots need not be much brighter than the background image.  This is one 

of the traits that make stereo systems so robust to interference and allows multiple units to easily coexist 

in close vicinity of each other.     

As mentioned, texture can be projected unto a scene using a miniature projector. The wavelength 

chosen is usually >850nm IR light that is invisible to humans. Intel has developed a few different versions 

that can be paired up with different imager combinations for best performance. Looking at Fig. 1 will in 

fact reveal that a patterned projector was used. One important aspect of a laser-based projector is that 

the coherence of the source needs to be reduced significantly to reduce the deleterious effects of laser 

speckle. However, it should be noted that even the best projectors with speckle-mitigation circuitry tend 

to show >30% worse subpixel performance than well textured passive targets (subpixel RMS is ~0.07 vs 

~0.05). 

 We turn now to another extremely important aspect of product viability, namely stability over 

time. Triangulation techniques are very sensitive to distortions in the optical system over time. For 



example, for structured light it is critical that the projection pattern not change over time or temperature, 

while stereo systems are impervious to this. However, for both stereoscopic and structured light systems 

any changes over time in the optical intrinsic properties (imaging lens location and pointing angle) and 

extrinsic properties (bending angles between the left-right imager for stereo or laser + imager for 

structured light) need to be minimized or it will impact the depth quality and accuracy. This can be partially 

addressed by building a miniature optical system that is mechanically isolated from the outside world so 

it is not impacted by external forces. This can best be done by encasing the optical head in a metal 

stiffener, as seen in Fig. 7, and mounting it at a single point with a small standoff. Unfortunately this needs 

to be balanced with the need for heat dissipation which benefits from thermal contact, especially if a laser 

projector is used. An additional approach is to develop dynamic calibration algorithms that can routinely 

check the calibration quality and correct for it, preferably with minimal user intervention.                

When engineering the best ultimate solution it is also important to optimize using all the tools of 

the trade, and this includes post-processing. For example, trying to minimize the cost or size of an optical 

depth sensing system may result in sub-optimal performance of the raw per-frame depth, but if this can 

be recovered by applying some post-capture filtering then this is a design freedom the engineers will want 

to explore. Fig 10 shows two different cases where the raw instant frame depth has reduced performance, 

but a small amount of temporal and spatial filtering recovers the performance.   

 

 

Fig. 10. Post processing of images can be used to clean up a depth map, as in this 3D selfie and office cubicle scene. Top: In 

this example we show how a small baseline stereo imager (as with the F400 solution) with a somewhat noisy depth map can 

be cleaned up by applying a small amount of spatial and temporal filtering. Bottom: RealSense™ D410 3D capture of an office 

cube with minor post processing using exponential moving average and edge-preserving domain transform filtering.   

  Returning now to the specific case of mobile phone usages, a system design should of course be 

small, low power, low cost, and be able to generate good depth in all environments and lighting 

conditions.  For face authentication and unlocking your phone in particular, it is important that users be 

able to use this feature indoors and outdoors, but also in very dark environments – watching television, 



waking up at night, walking the dog outside in the dark. For the facial unlock to work in the dark we need 

to illuminate the face. This should preferably be with IR light, or the user will be constantly blinded by 

visible flashes. It turns out that good facial authentication relies heavily on both 3D depth AND greyscale 

(or color) 2D image quality. So it is not desirable to use structured light to illuminate the face for face 

authentication, as the face image will be polluted with this pattern.  While some patterns can be partially 

removed in post-processing with degraded overall performance, ideally the system should have an IR 

flood illuminator to uniformly light up the face.         

 We will conclude this section with an overview of the flexibility of design for stereoscopic systems. 

Fig 11 shows an example of a few different designs of depth sensors that all use the same RealSense™ 

Vision Processing Unit. Why are so many different designs used?  The key is that performance can be 

optimized under different constraints because stereoscopic systems are extremely customizable and 

adaptable and can benefit from a large optical industry of COTS. This is also very important for industrial 

designs considerations.  For example, if long range and high quality are paramount and the product is less 

sensitive price, it will be possible to use higher performance CMOS sensors (higher dynamic range, more 

sensitivity and higher quality) as well as better and larger optics so that the input images are of high 

quality. In the other extreme where cost and size are critical, it is possible to use small baseline, cheap 

consumer-grade CMOS sensors, and plastic optics, as in the case of the F400 solution shown in Fig. 8.        

 

Fig.11  A collection of D4xx RealSense™ camera modules that all use the same ASIC. 

In general the main design parameters are 1. Baseline, 2. CMOS selection (resolution, global vs rolling 

shutter, HDR, color vs greyscale), 3. Field-of-View (FOV), and 4. Quality of lenses.  Figure 12 shows some 

examples of different RealSense™ modules and their theoretical performance variations.  These RMS error 

curves will decrease with larger baseline, narrower FOV, and higher resolution. Note that each system has 

a different Minimum distance (shown in Fig 12 right side) but that the minimum distance will decrease 

and scale linearly with the horizontal resolution mode during operation, meaning that a module that has 

MinZ=50cm at 1280x720 resolution will have a MinZ=25cm when operated at 640x360, but will also have 



2x worse RMS depth error. As seen in Fig. 12 Right side, at near range it is actually possible to achieve well 

under 1mm depth resolution.    

         

Fig 12. Design curves for the RMS spatial error metric for different model (right side plot is for shorter range). For the smaller 

baseline models sub-1mm resolution can readily be achieved. The smallest module is the D4m which has a baseline of 15mm 

and a 68x53 portrait-mode FOV.  

 

Fig 13. F400 reference mobile module modified for focus at 6cm range, showing a 3D snapshot of a mouth, and a penny 

placed near mouse mat. The RMS error was about 60 microns. This was achieved with no external projector usage.  

 

6. Evaluating Performance: Measurement metrics and methodology 

Regardless of the specific technology used to produce the depth image, there are a few 

fundamental aspects of depth camera performance that can be used to evaluate the quality of the images 

generated. In addition to traditional image characteristics such as spatial resolution and color quality, 

depth images are typically evaluated based on how well they reproduce the depth properties of the scene. 

In particular, depth accuracy is clearly important – how close is the computed depth to the true depth for 

each pixel in the scene.   

 



 

Fig. 14. Example of measuring absolute depth accuracy and the spatial RMS error. This illustrates a well textured 

wall measured at different distances. The farther away the wall, the larger the RMS error, as seen by the side view 

measurements of the spatial RMS error Z1<Z2<Z3.    

A related characteristic is the variation in computed depth errors across the image. This provides 

a measure of how “smooth” the image is, assuming a smooth scene, i.e., spatial noise.  Analogous to 

spatial noise is temporal noise, or how much variation over time (typically frame-to-frame) there is in the 

depth data, given a static scene.  A fourth basic metric is simply the number (or fraction) of valid depth 

pixels, regardless of how accurate their values are, referred to here as fill ratio. Under some conditions, 

there is insufficient data to determine a depth value for a particular pixel and therefore the pixel is labeled 

as “invalid” and is typically represented as a missing or dark depth pixel in the image. While it is generally 

assumed that a larger fill ratio is better, in some cases it is preferable to have an invalid pixel versus one 

that has significant error. In others, where accuracy is not as important, a valid yet inaccurate pixel is 

better than none at all. For stereo based depth cameras in particular, the algorithm used to compute the 

depth can be adjusted, or tuned, resulting in varying fill ratios, usually as a tradeoff with other 

performance metrics. Other depth metrics are sometimes computed and used to evaluate or qualify 

camera performance, but most are related to or derived from the basic metrics described above which 

are defined in more detail below. 

A related concept to depth performance metrics is that of Maximum Range, or how far can the 

depth camera see. In principle, this seems like a simple concept, but in practice, the answer is typically – 

“it depends”. Specifically, Max Range depends on which performance characteristic is limiting the range. 
The one that is most important for a particular application is typically the one that will determine the 

practical range of the camera. This concept will be discussed further in the following sections. 

Basic Depth Metric Definitions: 

Z-error, or absolute accuracy: Measures how close the reported depth values are to the actual distance 

(ground truth, GT). Z error may be defined in a variety of ways but most definitions use differences (which 

may be signed or magnitude) between measured depth values (per pixel or averaged over an ROI) and 

GT.   

Spatial Noise, or relative error: Measures the variation in depth values across an ROI assuming a flat plane 

target. This metric is independent of the accuracy of the depth values. Ideally, a flat target is used to 

measure the spatial noise and it is typically defined as a standard deviation or RMS of the distribution of 



depth values. If the camera is aligned parallel with the target, the distribution of depth values may be 

analyzed directly. Otherwise, the data must be fit to a plane before analysis. 

Temporal Noise: Measures the variation in depth values over time. Temporal noise may be defined as a 

standard deviation in depth values over a specific number of frames (e.g., 10). It is typically measured per 

pixel and then an average or median is taken over a specific ROI to represent the temporal noise for that 

device and ROI.  

Fill Ratio, or Valid Pixel %: Measures the portion of the depth image containing valid pixels (pixels with 

non-zero depth values). This metric is independent of the accuracy of the depth values. It may be defined 

over any particular region of interest (ROI).  

Performance Metric Measurement Methods: 

 The basic depth metrics may be determined in a number of ways but it is recommended that a 

common environment and methodology be used in order to simplify the testing and minimize errors. The 

common philosophy is to start by measuring under BEST case conditions, and in an as unambiguous way 

as possible.  This environment can be described generally as a flat surface that is placed at a controllable 

and known distance from the camera under test. For active systems (ToF, Structured Light, Active Stereo), 

the target surface is smooth with a uniform, non-glossy (diffuse) finish yet with high reflectivity. A flat 

white wall painted with a flat (or matte) white paint is a simple example of an acceptable test target. 

Alternatively, white poster board mounted to a rigid frame or structure may also be a suitable target.  

These tests are usually also done in low light.   In most cases, a flat surface target, like a wall, aligned 

parallel to the depth camera is used in order to simplify the measurement since GT may be determined 

from a single measurement using an independent absolute measuring device such as laser rangefinder or 

tape measure.  

In cases where the camera has no internal projector, or the projector is turned off, a passive test 

may be performed, in which case the target must also provide a sufficiently textured pattern. In this case, 

primarily applicable to stereo-based devices, special textured targets must be used or projected onto the 

white, ‘active’, target surface. Sufficient ambient lighting is also required when performing passive tests, 
but this should not require more than typical room lighting.  This pattern should emulate nature by having 

texture on many scales (be fractal in nature), so that measurements can be done at different distances.   

An example of a depth performance test system, used for RealSense™ cameras, is shown below. 

 



 

 

Fig. 15. Sample systems used for characterizing the performance of a depth sensor. The pattern in the bottom is an example of a pattern used 

for passive stereo testing.  

Depth metrics are typically measured in one of two ways: a) by capturing depth images from the camera 

and then analyzing the data in a separate, typically off-line, process; or b) performing the image capture 

and metric analysis in real-time using a dedicated tool designed for depth performance measurements. 

Sample RealSense™ Camera Performance Data: 

 Using the test system and methodology described above, basic depth metrics are measured for 

RealSense™ cameras. The standard measurement condition is a controlled indoor environment with 

typical ambient lighting (e.g., 100 – 200 Lux of overhead fluorescent light). Measurements are performed 

at various distances from the flat target, from near the camera’s MinZ to the longest practical distance, 
usually limited by the size of the available target. For the data presented here, the maximum distance for 

full image data is 1.5 – 2m, depending on the camera’s FOV. Beyond this distance, a reduced ROI (Region 

of Interest) is used to compute the metrics.  

A typical scan of absolute Z error for D410 depth cameras (with 55mm baseline and 65 deg horizontal 

FOV) is shown below in Figure 16. The camera is operating at 30 fps, 1280x720 resolution, and a projector 

electrical power of 210 mW. In this case, the mean error over the respective ROI is measured (Full = full 

FOV, Center = central 40% of FOV). The dashed line indicates an error of 2% of the actual distance, below 

which is considered acceptable for most applications. 



 

Fig. 16 A typical scan of absolute Z error for D410 depth camera. The Full and Center are aggregate results for different parts 

of the full depth map.    

A similar measurement of the spatial noise under the same conditions is shown below in Figure 17. This 

represents the amount of variation in depth values across the ROI, as measured by an RMS deviation from 

a plane fit to the data. Spatial noise of <1% is generally achievable out to 4m over the center ROI. 

 

Fig. 17 A typical scan of spatial noise RMS error (StD) for D410 depth camera. 

Fill ratio is primarily limited by the available signal (i.e., light from a well-textured scene). Under test 

conditions similar to the measurements shown above, where the projector provides all the signal to the 

camera, fill ratios >99% in the center ROI are achievable beyond 4m. A typical D410 depth map with 100% 

fill ratio over the center ROI at 4m is shown below in Figure 18. The projector power is 300 mW but ~100% 

fill is achievable at powers as low as 180 mW at 4m. The depth map also gives an indication of the spatial 

noise across the image (~0.7% in this case). 

 



 

Fig 18. Depth map contour plot at 4m range for a flat white wall using a patterned projector. The RMS variation in depth are 

<0.7%.   

Passive performance under the same conditions on a well-textured wall is typically better than the active 

performance shown above.  

“Range Anxiety” - Long Range Operation 

For distances beyond ~4m, the RealSense™ D410 cameras continue to perform well with 

performance that falls off with distance generally as expected and can be extrapolated from the shorter 

range data. Laboratory (indoor) testing up to ~8.5m has been done over a reduced ROI and projector-

limited fill ratios of >99% are seen up ~7m for HD resolution and longer for lower resolutions. 

Regarding the question of maximum range, the specific Max Z depends on the limiting performance 

metric. For example, using <2% error and <1% RMS noise as upper limits, typical D410 range is ~6 – 6.5m. 

Increasing or decreasing the acceptable performance limits will of course increase or decrease the Max Z. 

If fill ratio is the limiting metric, then range beyond 7m is achievable. Of course, outdoor operating range 

will generally not be limited in terms of fill rate, but error-based range will have similar, or slightly better, 

limitations as indoor. 

 

7. Summary: 

The use of depth sensors in mobile phones for user facing application is gaining a lot of 

momentum based on the many compelling usages that we have outlined. Many depth sensing 

technologies can potentially be miniaturized and employed for these usages, including Structured Light, 

Time-of-Flight, and active or passive stereo. We have presented the case here for the use of specific 

stereoscopic Intel RealSense™ depth sensor modules, such as the D4m with a 15mm baseline, which is a 

great candidate for fitting the spatial constraints and performance requirements, and is in general 

extremely flexible to design modification that can adapt it to a design space of size, power, cost, and 

performance.  
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