

 Intel® RealSenseTM Dimensional

Weight Software (DWS)

Based on Intel® RealSenseTM LiDAR Camera L515

Revision 1.1

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your

system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or

retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or visit www.intel.com/design/literature.htm.

Intel and the Intel logo, Intel® Core™, Intel® Atom™, trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2020 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents
1. Overview ... 5

2. APIs .. 6

2.1 Available configurations .. 6

3. Recommended setup .. 9

Stationary setup guidelines: ... 9

4. Initialization Phase ... 11

4.1 Floor calibration without a target .. 11

4.2 Targeted calibration ... 11

5. Box Measurement specifications .. 13

5.1 DWS Specifications ... 13

5.2 Measurement Accuracy .. 13

Product Limitations ... 14

6. Installation instructions .. 15

6.1 Download instructions & licensing .. 15

6.2 Integration ... 15

6.3 Interaction with the SDK ... 15

6.3.1 Required files .. 16

6.4 Integration ... 16

7. System requirements... 17

7.1 Operating system ... 17

7.2 Host (PC) configuration ... 17

8. Example code.. 18

9. }DWS Viewer Application .. 20

10. Troubleshooting .. 23

10.1 Application debug .. 23

10.2 SDK Debug .. 23

10.3 SDK error messaging ... 23

Figures
Figure 1. Intel® RealSenseTM DIM Weight Software Demo snapshot 5

Figure 2. Intel® RealSenseTM DWS – Camera angle ... 9

Figure 3. Intel® RealSense™ Camera distance to furthest visible point of

box .. 10

Figure 4. Example of an acceptable side view of the box (left) and an

acceptable top view of the box (right) ... 10

Figure 5 Software block diagram ... 15

Tables
Table 1. Box Measurement spec table ... 13

Table 2. Box Measurement accuracy table ... 14

1. Overview
Intel® RealSenseTM Dimensional Weight Software (DWS) is an easy to use, high-speed, precise volumetric

measurement software solution.

By combining the power of our proprietary volumetric measurement SDK with the award-winning Intel®

RealSense™ LiDAR Camera L515, we’ve built a legal for trade ready, highly accurate measurement

platform. From small boxes to large pallets, our solution enables logistics companies to better manage

their inventory and shipments. Intel® RealSense™ DWS enhances billing accuracy, aids in warehouse

space management, and increases workflow efficiencies through fast and accurate to-the-millimeter

measurements. Our platform seamlessly integrates with existing enterprise systems or can be activated

right out of the box.

Intel® RealSense™ DWS – Leading the dimensional measurement revolution by empowering our

partners with best-in-class Intel® RealSense™ technologies.

Figure 1. Intel® RealSenseTM DIM Weight Software Demo snapshot

2. APIs

2.1 Available configurations

Feature Description

Operational
mode

Static Box and camera stationary

Dynamic Future feature

DWS callback function DWS_measureCallback returns 2D and 3D
data in order to enable user view of the
box in the scene as part of DWS_Box

DWS frame callback Returns Dpeth, IR, & RGB frames from the
camera streams, alongside an internal
frame number identifier.

DWS status callback Is called when a noteworthy event has
occurred (e.g. calibration completion,
errors, etc.)

Calibration mode

Calibration enhances the dimension
accuracy. Performed once during camera
installation.

DWS_Status dws_create(DWS_Mode mode, bool multiple_boxes, dws_frameCallback
usercallback, dws_statusCallback statuscallback, DWS_Box * box_buffer, int&
outHandler);

Creates the SDK engine, starts the camera at the preconfigured settings, and returns stream via
a callback.
Accepts:

1. Mode: Static
2. Multiple boxes: Future use
3. Frame callback: Pointer to functioned used to get streaming frames from the SDK
4. Status callback: Pointer to function used to update on SDK events and errors
5. Box buffer: A structure to hold returned boxes.
6. Out handler: A variable which will be assigned the ID of the created engine. This ID is

used in later calls to identify which engine instance to perform the current API call.

DWS_Status dws_calibrate(int handler, int x, int y):

 This is a future feature, and currently is a stub.
Initializes the plane which coordinates x & y belong to as the base plane, on which the boxes will
appear
Accepts:

1. XY coordinates
2. Handler ID: see create for details.

DWS_Status dws_autoCalibrate(int handler, bool use_calibration_target):

 Initializes a base plane at the engine’s discretion.
Will raise statusCallback (see create) to indicate progress/completion.
Accepts:

1. Handler ID: see create for details.
2. Use_calibration_target: signals the SDK if calibration attempt will make use of a

calibration pattern

DWS_Status dws_start(int handler, dws_measureCallback usercallback): Starts the
measuring engine, returning measured objects via callback
 Accepts:

1. Handler ID: see create for details
2. User callback: the callback via which results will be returned, contained in the buffer

supplied at create()

DWS_Status dws_pause(int handler):

 Pause the measurement engine while still receiving camera stream.
 To resume measuring, call start().
 Pausing retains the calibration data attained by autoInit.

Accepts:
1. Handler ID: see create for details.

DWS_Status dws_stop(int handler):

 Stop both streaming and measurements.
 To restart, call Create() again.
 Frees all resources.

Accepts:
1. Handler ID: see create for details.

DWS_API_CALL const char * dws_version(int handler):

 returns the SDK version

Accepts:
1. Handler ID: see create for details.

DWS Dimension Callback signature:

void: Foo (int frame_id, int box_count, rsBox* boxes);

P 1: frame identifier. This matches to an identifier received previously in dws_frameCallback()

P 2: number of boxes detected

P 3: pointer to the detected box buffer (this is the buffer supplied by the user in dws_create())

DWS_Box:

• Dimensions:3 float fields, height, length, width

• Corners_2D: 1x8 2D Point array

• Corners_3D: 1x8 3D Point array

• Confidence: value in range [0 – 10] (int)

• ID: int unique box ID (unique only within current session)

• resolutionAtAxis: 1x3 float array, representing point cloud density on the dimension [H,L,W]

• planeDistance: 1x3 float array, representing distance to the plane denoting the dimension

[H,L,W]

• planeAngles: 1x3 float array, representing averaged angle to that plane

• boxOrigin: 1x3 float array, representing 3d location of the intersection of planes used in the

measuring process

void * dws_frameCallback(const void*, int, int, int, const void*, int, int, int,

const void*, int, int, int, int);

P 1: pointer to depth frame buffer

P 2: depth frame width

P 3: depth frame height

P 4: pointer to IR frame buffer

P 5: IR frame width

P 6: IR frame height

P 7: Pointer to RGB frame

P 8: RGB frame width

P 9: RGB frame height

P 10: Identifier for the current frames as a group (loops around at MAX INT)

DWS Status Callback:

void* dws_statusCallback(DWS_Severity severity, DWS_MessageCode code, const char *)

P 1: The notification’s severity (Error/Warning/Info)

P 2: numeric message code identifying the status

P 3: String with additional data

3. Recommended setup

Stationary setup guidelines:
In order to achieve best performance and accuracy Top set-up position is recommended

- Distance to floor or table-top should be larger than 0.8m.

- Distance to box top surface should be larger than 0.7m.

- Distance to floor or table-top should be less than 4m.

- Angle between line of sight from camera to box top surface normal should be between 0 and

45deg.

- Entire box must be included within the central 80% of frame (rim of 10% on each of the 4 sides).

- Box should be flat on a surface (not tilted).

- The scene should not be exposed to sunlight.

- For best results surface under box should have high reflectivity and very low specularity (matte

and not shiny)

The setup is shown in Figures 2 and 3.

Figure 2. Intel® RealSenseTM DWS – Camera angle

Figure 3. Intel® RealSense™ Camera distance to furthest visible point of box

Figure 4. Example of an acceptable side view of the box (left) and an acceptable top view of
the box (right)

Example of orientation showing 2 facets with
angle to normal less than 45o

Example of orientation showing only 1 facet

4. Initialization Phase
DWS uses the plane and position of the floor or table-top in box measurement calculations. During initial

setup a calibration to the floor or table-top is required.

4.1 Floor calibration without a target
Dws_autoCalibrate() first looks for a calibration target. If no target is found, the floor (table-top) is used

for calibration. Requirements for floor or table-top calibration

- The surface (floor, table-top) must be flat. (For uneven surfaces see target calibration method

below.)

- The surface should be reflective. A wood floor is an example of a good reflective material. Dark

carpet is an example of a poorly reflective material.

- The surface should not be specular. A highly polished and shiny floor has high specular reflection

and is not advised.

- The camera must remain in a fixed position after calibration. If the camera or surface is moved,

a new calibration is required.

4.2 Targeted calibration
In the case that the targeted area for box placement is different than the floor sensed by the camera, a

guided calibration is available. An example of this use case can be a camera that has a table and a floor

in the scene where the table is used to measure the box size. Another example is a camera that has in

the field of view both a scale and floor where the box is placed on the scale which is higher than the

floor level.

The target can be downloaded at this URL https://www.intelrealsense.com/wp-

content/uploads/2020/07/DWS_Calibration_Target.png

dws_autoCalibrate() will automatically look for a calibration target. If the target is found, it will be used

for the calibration. If the target is not found, the floor (table-top) is used for calibration, and a

CALIBRATION_SUCCEEDED_NO_MARKERS status will be raised, to signal that calibration was completed,

but failed to detect the target.

If the target is printed on material that has some thickness, this height can be automatically removed by

the application during measurement. Within the SDK folder open the file

/Configuration/static_mode_config.json. Replace the value in “floor_bias” with the appropriate

thickness of the target in mm. For example, if the target material is 1mm thick, the line would be

“floor_bias” : -0.001,

https://www.intelrealsense.com/wp-content/uploads/2020/07/DWS_Calibration_Target.png
https://www.intelrealsense.com/wp-content/uploads/2020/07/DWS_Calibration_Target.png

Target size required based on camera distance to floor or other surface.

Distance from camera to floor is less than 2
meters.

Print target on ISO A4 or ANSI A (8.5”x11”)

Distance from camera to floor is greater than 2
meters and less than 4 meters.

Print target on ISO A2 or ANSI C (16”x23”)

Requirements for floor or table-top calibration with target:

- The printed target must be flat. Folds and creases should be avoided. If the edges of the paper

are curling, gluing or taping the target to flat cardboard is recommended.

- Print on non-glossy, white copy paper.

- Scale to fit the page size.

- Place the target in the center of the camera frame for proper calibration.

5. Box Measurement specifications
The basic performance metrics of Box Measurement application are listed in Table 1.

5.1 DWS Specifications

Table 1. Box Measurement spec table

Parameter Value

Measurement granularity 1mm

Lighting Indoor lighting with no sunlight. Other light

sources that emit light in the 860nm

wavelength should also be minimized.

App latency <2 sec from calling measure command to

receiving X,Y,Z measurements with high

confidence.

Benchmark performed on Intel Core i5 Gen6,

8GB RAM with an SSD HD, running Windows

10.

Box materials Wood, cardboard

Surface materials Lambertian (matte) surfaces

* shiny surfaces such as reflective tape or

plastic wrap could cause measurement

inaccuracy

5.2 Measurement Accuracy
Measurement accuracy is defined in terms of scale division “d”, which represents the max rounded

error. This d value is dependent on the box size and box distance from the camera.

Table 2. Box Measurement accuracy table

d (cm) Min box size

LxWxH

Max box size

LxWxH

Max distance
camera to floor

0.5 5cmx5cmx5cm 90cmx80cmx50cm 1.5m

1 10cmx10cmx10cm 100cmx120cmx100cm 2.5m

5 30cmx30cmx30cm 150cmx200Lx200cm 4m

The above table is valid for perfect cuboids. Tests are performed using wooden boxes on a wooden

floor. Irregular shapes and differences in reflectivity of the boxes and floor could affect measurement

results.

For real life boxes, where the box might be dented, have rounded corners, etc., accurate measurement

is defined using the following formulas:

BOX_SIZEx = one of the tape measured for a specific size

BOX_SIZE_AVG = Box size average will be calculated as the average of three BOX_SIZE measurements

plus the max error between measurements

BOX_SIZE_STD = max(|BOX_SIZE_AVG – BOX_SIZE1|; |BOX_SIZE_AVG – BOX_SIZE2|;|BOX_SIZE_AVG –

BOX_SIZE3|)

BOX_SIZE_STD must not exceed 5% of BOX_SIZE_AVG

BOX_H = avg (2 opposites sides of the BOX_SIZE_AVG)

BOX_H_STD = max (2 opposites sides of the BOX_SIZE_STD)

BOX_W = avg (2 opposites sides of the BOX_SIZE_AVG)

BOX_W_STD = max (2 opposites sides of the BOX_SIZE_STD)

BOX_D = avg (2 opposites sides of the BOX_SIZE_AVG)

BOX_D_STD = max (2 opposites sides of the BOX_SIZE_STD)

Accurate measurement for box height will be equal to BOX_H + BOX_H_STD

Accurate measurement for box width will be equal to BOX_W + BOX_W_STD

Accurate measurement for box length will be equal to BOX_L + BOX_L_STD

Product Limitations
The DWS measurement system is designed for and tested with wooden and cardboard boxes. Although

other materials may work well, avoid using the system with materials that are irregular or highly

reflective. Avoid materials such as black plastic wrap and black cardboard which are poor reflectors of

IR light.

6. Installation instructions

6.1 Download instructions & licensing

DWS along with the necessary license can be downloaded from

https://www.intelrealsense.com/dimensional-weight-software/

Refer to Intel® RealSense™ Software Activation Tool Guide for details on how to install trial and

purchased licenses

6.2 Integration

Figure 5 Software block diagram

6.3 Interaction with the SDK

The SDK supplies API calls to allow functioning. All API calls are one-directional, returning only

completion status.

All video frames and measurement data are sent to the 3rd party app via callbacks.

6.3.1 Required files

• Binaries:

o All dlls in the download folder

o Plugins.xml

• Header Files:

o DWS_Sdk.h

o DWS_Types.h

o DEBUG_DWS_sdk.h

• Additional files under /Configuration/

o BoxMeasure <DIR>

o Static_mode_config.json

We strongly discourage tampering with the configuration files, as any change in them could deteriorate

accuracy and performance.

6.4 Integration

Integration of the SDK was designed to be as simple as possible.

1. Link the DWS_Sdk.dll to your project.

2. Add the header files to an include directory in the project.

3. Make sure the rest of the *.dll files supplied are copied to the build directory (same level as

DWS_Sdk.dll)

4. Do the same with plugins.xml.

5. Copy the “Configuration” directory to an appropriate location:

The binaries will look for it in your app’s runtime “working directory” (usually where the

executable file is found).

Note that the streams and their resolutions and formats are hardcoded in the SDK as follows:

• Depth: 640x480 Z16 (16 bits per pixel (bpp))

• IR: 640x480 Y8 (8 bpp)

• Color 1280x720 RGB (24 bpp)

To display the frames returned from the SDK, copy the images to a local buffer. Make sure that the

buffers allocated are of sufficient size.

7. System requirements

7.1 Operating system
At launch, the following operating systems will be supported:

• Windows 10 (build 15063 or later)

7.2 Host (PC) configuration
The recommended configuration to optimally run DWS is as follows:

• Intel Core i5 (6th Gen minimum) processor, 8GB memory

o This assumes a desktop/laptop with sufficient cooling arrangements to make use of the

CPU.

o Ultra-portable laptops that do have Intel Core i5 CPUs, but utilize fanless designs may

suffer poor DWS performance

8. Example code

/***

INTEL CORPORATION PROPRIETARY INFORMATION
This software is supplied under the terms of a license agreement or nondisclosure
agreement with Intel Corporation and may not be copied or disclosed except in
accordance with the terms of that agreement
Copyright(c) 2020 Intel Corporation. All Rights Reserved.

***/

#include "DWS_sdk.h"
#include <iostream>
#include <mutex>

void * FrameBuffers[3]; // 0 - depth, 1 - IR, 2 - RGB
void * local_depth = new unsigned char[640 * 480 * 2];
void * local_ir = new unsigned char[640 * 480 * 1];
void * local_colour = new unsigned char[1280 * 720 * 3];
bool keep_alive = true;
bool image_ready = false;
std::mutex mutex_display;
DWS_Box boxes[DWS_MAX_NUM_OF_BOXES];
int numOfDetectedBoxes = 0;
long im_id = -1;
int handler = -1;

void * _callback(const void* depth_buffer, int d_w, int d_h, int d_bpp, const void*
ir_buffer, int i_w, int i_h, int i_bpp, const void* colour_buffer, int c_w, int c_h, int
c_bpp, int frameId)
{
 // ###############################
 // #### CRITICAL ####
 // COPY FRAMES TO LOCAL BUFFER!!!!
 // ###############################
 {
 std::lock_guard<std::mutex> lck(mutex_display);
 memcpy(local_depth, depth_buffer, (d_w *d_h *d_bpp));
 memcpy(local_ir, ir_buffer, (i_w *i_h *i_bpp));
 if (colour_buffer!=nullptr)
 memcpy(local_colour, colour_buffer, (c_w *c_h *c_bpp));
 im_id = frameId;
 image_ready = true;
 }

 return nullptr;
}

void * _dim_callback(int frameId, int box_count, const DWS_Box* box_buffer)
{
 numOfDetectedBoxes = box_count;
 return nullptr;

}

void* _status_callback(DWS_Severity severity, DWS_MessageCode code, const char* msg)
{
 std::cout << "Severity: " << severity << ", Code: "<< code << ", " << msg <<
std::endl;

 switch (code) {
 case CALIBRATION_FAILED: // Couldn't complete base surface detection
 case BAD_USER_INPUT: // Bad input to dws_create
 case CAMERA_DISCONNECTED: // Detected camera disconnection
 case INVALID_LICENSE: // License file missing, expired, or doesn't
match camera SN
 case MISSING_CONFIGS: // Couldn't find the /Configuration/ folder
 case BAD_API_CALL: // API handle called during an active earlier
one
 case UNKNOWN_ERROR: // Internal, exception, msg might contain more
details
 dws_stop(handler);
 keep_alive = false;
 default:
 break;
 }

 if (code == CALIBRATION_SUCCESSFUL)
 {
 if (dws_start(handler, _dim_callback) != DWS_Status::SUCCESS)
 dws_stop(handler);
 }
 return nullptr;
}

int main(int argc, char* argv[])
{
 int imageNum = 0;
 auto status = dws_create(DWS_Mode::STATIC_MODE, false, _callback,
_status_callback, &boxes[0], handler);
 if (status != DWS_Status::SUCCESS)
 {
 return -1;
 }
 std::string _ver = dws_version(handler);
 dws_autoCalibrate(handler, false);
 while (keep_alive) {
 if (image_ready) {
 std::lock_guard<std::mutex> lck(mutex_display);
 std::cout << "new image received. ID = " << im_id << std::endl;
 image_ready = false;
 }
 }

 return EXIT_SUCCESS;

9. }DWS Viewer Application
The SDK includes a DWS viewer application which can be used to test the solution and serve as an

example of how the APIs function. The application is not designed for production systems and should

only be used as a demonstration application.

The initial application page provides
guidelines for best results.

Clicking Next initializes the camera.

As part of the initialization process,
the software will calibrate to the
floor. It is important that the camera
have a clear view of the floor for this
step.
The live view in the application is the
depth map of the scene.
It is important that the yellow
rectangle is free of any objects.
Check the box if a target is used for
calibration (see Section 4 in this
document).

If the camera moves after calibration
a recalibration is required. This is
accomplished by clicking
RECALIBRATION at the top right
corner of the application.

The camera needs a moment to
calibrate to the floor.

This screen indicates that the system
is ready to measure a box. Place a
box on the floor within the yellow
rectangle and click the Measure
button.

The application only takes a moment
to measure the box.

Measurement results are displayed
on the screen.
Details including the angle to the top
surface, confidence, and execution
time are also shown. This information
is available through the SDK.

Error messages are displayed when
common issues are encountered.
Possible “bad box” errors include:

• Box is too close/far

• Box is too large/small

• Box detected out of central part
of FOV

• Camera to box angle is greater
than 45deg.

10. Troubleshooting

10.1 Application debug
The DWS Viewer application has the ability to save log files for debug purposes. It is recommended to

only enable debug mode when necessary. To enable debug mode open the file AppConfiguration.json in

the SDK directory. Change the value of “Development” from false to true, save the file, and start

the application. Log files are saved in C:\temp\Realsense\Logs\.

If the system does not obtain a measurement of high confidence it will continue to try until

MeasureTimeOut expires. For debugging purposes it may be useful to extend the time out value from

the default of 3 seconds. MeasureTimeOut is located in the AppConfiguration.json file. Simply modify

the file using a text editor, save, and run the application with the new time out value.

10.2 SDK Debug
The DWS SDK has the ability to save log files and record images for debug purposes.

Note that using this ability will quickly fill your storage.

To make use of this functionality:

• Include DEBUG_DWS_sdk.h

• Call debug_ debug_dws_startDebugRecordingSession() to start the session

• Call debug_ debug_dws_endDebugRecordingSession() to end the session.

Note: Only start/end debug sessions while no DWS operations are active! i.e before dws_start/calibrate

calls have been made, or after dws_pause has been called and returned.

10.3 SDK error messaging
The SDK includes error messages and warning messages returned through dws_statusCallback.

CALIBRATION_INVALIDATED (error) The camera has moved during processing to

render the previous calibration invalid.

Recalibration is required.

NO_CALIBRATION_FOUND (warning) This warning is expected if a measurement is

attempted before calibration is performed. If this

warning is encountered, a calibration is required.

CALIBRATION_DONE_NO_MARKERS (warning) Indicates that the calibration was successful and

that a target was not used for calibration.

CALIBRATION_FAILED (error) Calibration was attempted and failed.

If a target was used for calibration make sure the

target has no bends and creases.

If no target is being used confirm in live depth

preview that the floor or table-top are providing

a good depth map. If depth map is poor, consider

moving away from sunlit areas.

Confirm no objects other than the target are

inside the preview yellow box during calibration.

CAMERA_DISCONNECTED (error) Confirm that the L515 camera USB cable is

properly connected. Confirm that the L515

camera shows in device manager and a valid

camera device. The application requires a restart.

INVALID_LICENSE (error) Attempting to use DWS without a valid license. A

license can be obtained from

https://www.intelrealsense.com/dimensional-

weight-software/.

LICENSE_EXPIRES_SOON (warning) License will expire within 10 days. A new license

will be required to continue using DWS after the

current license expires.

MISSING_CONFIGS (error) The SDK cannot find the necessary configuration

files, or they are corrupt/syntactically invalid.

Place the files in the correct location and confirm

files are valid.

UNEXPECTED_BOXES (warning) SDK was started in single box mode, but multiple

boxes were detected in the frame.

BAD_BOX (warning) This warning will be accompanied by one of the

following messages giving more information

about the issue

"Box is too close"

"Box is too far"

"Box is too large/small"

"Box detected out of central part of FOV"

"Camera to box angle is greater than 45 deg":

https://www.intelrealsense.com/dimensional-weight-software/
https://www.intelrealsense.com/dimensional-weight-software/

BAD_USER_INPUT Occurs when invalid input is given to

dws_create()

BAD_API_CALL Indicates that an API call has been made out of

order. Either a previous step hasn’t been

completed, or a previous API call is still running

UNKNOWN_ERROR (error) The SDK suffered an exception and is unable to

recover. Restart the application and contact

support if the issue continues.

